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“[I]f mathematics is the study of purely imaginary states of things, poets must be 
great mathematicians.”

							                  —Charles Sanders Peirce1

I prove a theorem and the house expands:
the windows jerk free to hover near the ceiling,
the ceiling floats away with a sigh.
	                                                     —Rita Dove2

A few years ago, mathematician, writer, and regular contributor to 
NPR Keith Devlin wrote that mathematics is about rendering the 
invisible visible and about inventing symbolic worlds into which 
the mind can enter. “Is there a link between doing mathematics and 
reading a novel?” Devlin asks. “Very possibly,” he answers.3 Imagin-
ing a conversation between two invented characters or the intricate 
imagery of a poem arguably requires a similar kind of mental process 
as imagining “the square root of minus fifteen,” as mathematician 
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Barry Mazur has demonstrated.4 “Of all escapes from reality,” wrote 
mathematician Giancarlo Rota, “mathematics is the most successful 
ever.”5

Not that literature is about escaping from reality, of course. It and 
all the visual and performing arts, as well as every discipline in the 
humanities and sciences for that matter, often share with mathe-
matics a common goal: that of describing and/or addressing the “re-
ally real.” Questions of reality, truth, and certainty are at the core of 
the philosophy of mathematics: Does mathematics afford us entry 
into reality and truth? Does it provide us with certainty? Contrary 
to Platonist beliefs about the ability of mathematics to give us these 
things is the stance that mathematics is actually about multiple re-
alities, relative truths, complexities, and ambiguities. In essence, do-
ing pure mathematics (not merely doing computations) is an exer-
cise in imagination—and imagination, an exercise in abstraction.

One need only recall a few key moments in the history of math-
ematics—the discovery of irrational numbers by the ancient Greeks; 
the development of non-Euclidean geometry; Kurt Gödel’s findings 
concerning undecidable propositions and the “incompleteness of 
mathematics”; chaos theory—as well as the debates and controver-
sies surrounding these topics, to see how closely mathematics dances 
with uncertainties. Perhaps what mathematics shows us is that the 
“really real” is, in fact, a whirl of ambiguity, and that, as mathemati-
cian William Byers has written, mathematics requires thinking in 
terms of contradiction and paradox.6 Or perhaps, as Edwin Hutchins 
and others have argued, we exteriorize thinking through our physi-
cal environment, through marks, instruments, and the physical con-
figurations of objects in our built environment.7 A related claim, but 
one that is vigorously contested, is the notion that George Lakoff 
and Rafael Núñez have proposed: that mathematics exists only be-
cause the human brain does—it is a product of it, just as metaphors 
and anything we make are.8 And so, the age-old question remains: 
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Are mathematical objects and concepts transcendental entities, Pla-
tonic ideas hovering in the out-there to be discovered, or are they 
invented by the human mind?

Thinking about mathematics inspires many kinds of questions: 
metaphysical questions on the status (existence) of mathematical 
objects and concepts; epistemological questions on how we “know” 
mathematics to be true and verify it as such; semiotic questions 
about the nature of mathematical language; as well as questions 
regarding how the mind visualizes, categorizes, systematizes, ab-
stracts, and articulates entities that are imagined, or, in many cases, 
are barely imaginable at all. Among the early landmark thinkers in 
the philosophy of mathematics there have been those, like Plato and 
Kant, who have seen pure mathematics as part of the world of forms 
and only accessible via reason; Aristotle, who saw mathematics not 
as something separate from the world of sensation but as related to 
the way the mind performs its thought; Giordano Bruno, who be-
lieved mathematics (geometric thinking in particular) to be the link 
between the human and celestial worlds; Galileo and Kepler, who 
proposed that the universe was written in mathematics; Descartes, 
who built a philosophy around the certainty he believed mathemat-
ics offered; and Gottfried Wilhelm Leibniz, who saw mathematical 
propositions as not true of particular eternal objects or of idealized 
objects resulting from abstraction but as true because their denial 
would be logically impossible.

In the nineteenth and early twentieth centuries, discourse around 
the philosophy of mathematics developed considerably. George 
Boole, Gottlob Frege, Charles Sanders Peirce, Bertrand Russell, Alfred 
North Whitehead, and Rudolf Carnap (among many others) investi-
gated the relationship between mathematics and logic (and how to 
reduce mathematics to logic), asking questions about topics such as 
certainty, consistency, equivalence, and the nature of axioms, prop-
ositions, and proofs. Thus formed what is known as the mathemati-
cal foundations movement, or “logicism,” which continues to thrive 
as a theory of and method for thinking about mathematics, as well 
as being much debated. Work on the relationship between math-
ematics and language—formal and natural—also increased its activ-
ity at the beginning of the twentieth century, inspiring later work 
in semiotics, linguistics, computer science, and cognitive science by 
Wittgenstein, Tarski, Montague, Chomsky, Hofstadter, and Rotman. 
Around the beginning of the twentieth century, the “formalist” view 
of mathematics emerged, which views mathematics as axiomizable 
symbol-entities of Peano arithmetic and ultimately comprised of 
strings of “game” rules (i.e., Hilbert, Curry, Bourbaki). Contrary to 
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this position was (and is) the “intuitionist” position, which seeks 
to establish mathematics as a system of mental constructs that arise 
from what a finite human can conceive of and prove without the 
use of indirect demonstrations derived from contradiction (i.e., 
Brouwer). And apart from adherents to the three major schools in 
the philosophy of mathematics (logicism, formalism, and intuition-
ism) are those who continue to tend toward the Platonic model, in 
which mathematical objects exist independently of our minds. Dur-
ing this last century of great mathematical advances and discussion 
on the nature of mathematics as a project, mathematicians Henri 
Poincaré, Edward Kasner and James Newman, David Hilbert, Her-
mann Weyl, Jacques Hadamard, and François Le Lionnais, among 
others, penned important biographical studies, as well as treatises, 
on the doing of mathematics—that is, the processes of imagining, 
inventing/discovering, calculating, verifying, and so on.9

The philosophy of mathematics, like mathematics itself, contin-
ues to flourish.10 During the last half-century, W. V. O. Quine and 
Hilary Putnam have proposed a notion of “mathematical empiri-
cism,” or “naturalism” (building, to some degree, on that of J. S. Mill  
and on intuitionism), in which the ontology of mathematical enti-
ties and mathematical truth is based in human experience and re-
veals itself to be indispensible to scientific theory. Studies by Brian 
Rotman, Sha Xin Wei, and Andrew Pickering have examined the 
gestural, performative, and technical (and technological-related) as-
pects involved in doing mathematics: actions such as creating no-
tations, methods, proofs, diagrams, and digital simulations.11 The 
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work of philosophers of mathematics such as Imre Lakatos and of 
mathematicians such as Reuben Hirsch is closely connected to social 
and cultural phenomena.12 Social constructivists may characterize 
their approach as thoroughly materialist and not mentalist or logi-
cist at all, while at the opposite end of the philosophical spectrum, 
metamathematics (the study of mathematics through the use of 
mathematics) allows us to distinguish mathematical entities from 
mathematical operations, examining the peculiar reflexive status 
of those mathematical theorems and proofs that can be used as a 
mathematical entity in another theorem or proof. The “structural-
ism” of Stewart Shapiro considers mathematics as something that 
describes positions of entities, rather than describing entities as ob-
jects, within a given mathematical structure (which is itself abstract 
and Platonic in its existence). The philosopher Alain Badiou has 
returned to Plato in order to reclaim what he views as the genu-
inely ontological capacity of mathematical thought for philosophical 
inquiry. For Badiou, mathematics provides a fundamental condition of 
possibility for philosophy, since mathematics constitutes the first form 
of secular thinking that, in addressing the problem of infinite multi-
plicity, is free from a theological concept of both the Infinite and the 
One while at the same time being indifferent to the implacable histori-
cism that has characterized philosophical thought since Hegel.13

And what of the second term in the title of our special issue: “the 
imagination”? Classical, medieval, and early modern philosophers 
defined it as the faculty involved in the production of images of 
things no longer present. Both the Latin term imaginatio and the 
Greek phantasia (from phaos [light] according to Aristotle, “because 
it is not possible to see without light”)14 retain this association with 
mental imagery, whose “virtual” quality brings the imagination 
close to the faculty of memory while at the same time distinguishing 
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it from perception.15 Throughout classical and medieval accounts, 
imagination featured as a middle faculty between sense perception 
and rational intellection; it was also closely associated with “the 
common sense,” the faculty to which Aristotle attributed the capac-
ity of knowing general sensations and categories of perception: red-
ness in general, for example, rather than the redness of a particular 
flower. Like the common sense, the imagination was not thought to 
be concerned either with purely empirical or metaphysical objects. 
Imagination, according to Aristotle, is not thought, but it is none-
theless required for any kind of thinking to take place: “imagination 
is different from either perceiving or discursive thinking, though it 
is not found without sensation, or judgement without it,” Aristotle 
argues; similarly, “thinking is different from perceiving and is held 
to be in part imagination, in part judgement.”16

A persistent philosophical tradition associates the imagination 
with generating mathematical knowledge. In De memoria et reminis-
centia, Aristotle argues that the imagination supplies the images that 
are necessary to all thought and then elaborates by way of analogy 
with geometrical diagrams: just as thought reasons about magni-
tude in general by drawing a picture of a triangle with a determi-
nate magnitude, so also “without an image thinking is impossible” 
(450a1). Proclus’s commentary on Euclid maintains that

the understanding contains the ideas but, being unable to see them when they 
are wrapped up, unfolds and exposes them and presents them to the imagina-
tion sitting in the vestibule; and in imagination . . . it explicates its knowledge 
of them, happy in their separation from sensible things and finding in the 
matter of imagination a medium apt for receiving its forms. Thus thinking in 
geometry occurs with the aid of the imagination. Its syntheses and divisions 
of the figures are imaginary.17

Centuries later, Thomas Aquinas argued that geometrical figures are 
grasped “by means of the imagination alone, which is sometimes 
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referred to as an intellect.”18 Even Descartes, who sought to reduce 
geometrical relationships to algebraic symbols and equations, argued 
that the imagination was the place where sensory images could en-
counter intellectual thought and that both arithmetic and geometry 
provided the best models for how this was the case.19

	 Mathematician Barry Mazur has written engagingly on the use 
of the imagination in mathematical calculations of all kinds: it re-
quires a special stretch, an extra effort that can be practiced and 
gradually mastered, to imagine solutions to new mathematical 
problems. “Imagination is held to be a movement,” Aristotle argues 
in De Anima, “a movement resulting from an actual exercise of a 
power of sense.”20 And one key to imagining number, Mazur argues, 
is to imagine it, too, as a movement: number is not a thing, but a 
“verb,” an “act” of doubling or tripling. But imagining number as a 
transformational movement can be quite different from creating a 
mental picture, as we usually do when we imagine in a literary or 
artistic way, as Mazur shows (137–139). Many mathematical objects 
are quite difficult to imagine in the usual sense, including even the 
familiar natural numbers. Gottlob Frege has proposed that, if asked 
to imagine the number 4, we may picture the written numeral (Ara-
bic or Roman), or four dots on a single die, or four letters in the word 
“gold.” In each case, however, it is not number itself that we picture, 
but rather a token or example of a particular grouping: we could say 
that the “four” we imagine is an attribute of the object or concept 
that we picture, when that object is considered as a multiplicity.21 
But this is still not a direct imagination of number per se, for which, 
in the accounts of both Plato and Descartes, for instance, we would 
have to abandon the imagination (albeit temporarily) in favor of 

Saiber  /  Mathematics and the Imagination� 7

18. Ibid.

19. See “Rules for the Direction of the Mind,” in The Philosophical Writings of Descartes, 
2 vols., trans. John Cottingham, Robert Stoothooff, and Dugald Murdoch (Cambridge: 
Cambridge University Press, 1985), rule 14, esp. 1:58–62, and rule 12, esp. 1:42–43; 
discussed by Brann, World of the Imagination (above, n. 15), pp. 75–77; Sepper, Des-
cartes’s Imagination (above, n. 15); Jacob Klein, Greek Mathematical Thought and the Ori-
gin of Algebra, trans. Eva Brann (Cambridge, MA: MIT Press, 1968), pp. 197–211.

20. Aristotle, De Anima (above, n. 14), p. 1:681 (428b10–429a2).

21. Gottlob Frege, “The Concept of Number,” in Benacerraf and Putnam, Philosophy of 
Mathematics (above, n. 10), p. 132. Bertrand Russell would call it a “plurality”: “Number 
is what is characteristic of numbers, as man is what is characteristic of men. A plurality 
is not an instance of number, but of some particular number. A trio of men, for ex-
ample, is an instance of the number 3, and the number 3 is an instance of number; but 
the trio is not an instance of number.” See Russell, Introduction to Mathematical Philoso-
phy, 2nd ed. (London: George Allen & Unwin, 1920), p. 11.



another kind of reasoning, distinguishing the concept of “number” 
in general from “numbers,” and “numbers” in turn from the notion 
of an undifferentiated unit that allows any counting to take place.22 
“Thought often leads us far beyond the imaginable without thereby 
depriving us of the basis for our conclusions,” Frege observes (133), 
while the philosopher Eva Brann points out that the objects of non-
Euclidean geometry are “flawlessly thinkable yet quite unimagina-
ble” (596).

In its relation to mathematical objects, therefore, and especially 
to difficult concepts such as irrational numbers, sets, or Riemannion 
manifolds, the imagination is perhaps best approached in several 
different ways. The broadest is to regard the imagination as proxi-
mate to, even continuous with, a notion of “intuition” in general: 
that kind of knowledge or way of knowing, common in philosophi-
cal discussions of mathematical thought, in which we seem to grasp 
abstract insights immediately and without conscious reasoning. This 
position could be said to be broadly Kantian,23 and it has obvious 
affinities with the intuitionist position in the philosophy of math-
ematics as described by Arend Heyting.24 Heyting has written an en-
gaging dialogue to illustrate the positions held by the intuitionist  
(characterized as “Int”), who is at one point addressed by the char-
acter “Letter,” who objects specifically to the intuitionist treatment 
of infinity: it introduces “obscurity and confusion” (71) and reveals 
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the intuitionist as “not only dogmatic, but even theological” in his 
metaphysical assumptions about “objective and eternal truths.” 
Int calmly responds with an account that we could regard as be-
ing eminently imaginary in the sense given above and defends the  
intuitionist position by aligning it with philosophy, history, the so-
cial sciences, and even “arts, sports, and light entertainment” (74)—
the last activities in which usefulness of application is not the cri-
terion of success. The very problem of mathematical “reality” must 
never be presumed but always be at issue, Int argues: “It is too often 
forgotten that the truth of . . . constructions depends upon the pres-
ent state of science and that the words ‘in reality’ ought to be trans-
lated into ‘according to the contemporary view of scientists’” (75).

As noted above, this problem of the “realness” or “unrealness” 
of all mathematical objects—and not simply specific objects such as 
imaginary numbers—represents an important domain of discussion 
in the philosophy of mathematics and presents yet another way to 
discuss a relationship between mathematics and the imagination. 
Are mathematical objects, such as integers and sets, or mathematical 
relations, such as one–one correlation among sets, “real”? Brann has 
pointed out that one of the imagination’s most familiar qualities is 
its capacity for being “twice unreal”: the imagination produces im-
ages that are not real in the sense of existing independently outside 
the mind, and these images can be of things that do not exist in a 
real sense (425), such as unicorns and chimeras. From Plato onward, 
fiction has provided philosophy with its most potent examples of 
such “unreal” entities. But mathematics also can be said to provide 
equally complex objects of an unreal or, more controversially, of a 
fictional type. The sixteenth-century Italian mathematician Gero-
lamo Cardano referred to all negative numbers, as well as imaginary 
numbers, as fictae.25 Jeremy Bentham offered a systematic account 
of the “fictions” of thought and language, which encompassed pri-
mary fictional entities such as quantity, quality, motion, and rela-
tion and included numbers and mathematical operations of simple 
and complex types. In Bentham’s view, real entities are sensible enti-
ties, but they are also the ideas we form from sense impressions (for 
Bentham, the idea of a cat is as real as the furry, whiskered creature 
so many of us have seen and pet). Fictional entities, in turn, are 
linguistic artifacts, invented by the imagination, which we take as 
if they were real; they are necessary entities without which discourse 
on many subjects would be impossible.26
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Since, for Bentham, mathematics deals with “physical existences, 
i.e. bodies and portions of space . . . in respect of their quantities 
and nothing else,” and since quantity is itself a category of fiction, 
mathematical ideas are also a species of fiction.27 Number, whether 
taken as a pure abstraction (as a unit of quantity) or as a notation (a 
word or symbol), is also a fiction, as are the various “contrivances” 
(as Bentham calls them) that are developed in mathematics to find 
the unknown solution to a problem (we would call them “opera-
tions”).28 These fictions include the four basic operations (addition, 
subtraction, multiplication, division), as well as higher-level opera-
tions such as the finding of tangents, the translation of algebraic 
equations into geometrical figures, and the use of calculus. Insofar 
as mathematical notation fixes conventional signs to ideas that are 
thinkable only through the system of notation that allows us to ma-
nipulate them, for Bentham, mathematics is like a language, and the 
ideas of relation that it designates are fictions.29

One reason Bentham’s theory of fiction could be so extensive was 
because he had categorically distinguished “fabulous” objects from 
fictional ones, assigning to the category of the fabulous fictions of 
the literary or mythical type.30 The usefulness of this distinction in 
thinking about mathematical objects is visible in Bertrand Russell’s 
similar notion of “logical” or “symbolic fiction” in his Introduction 
to Mathematical Philosophy (1919), in which he uses the notion of 
“fiction” to characterize both numbers and sets (or “classes”—num-
bers being defined in terms of classes by Russell). Throughout the 
Introduction, Russell evinces an ambivalent, even contradictory at-
titude toward fiction and the imagination. In his view, we accept 
mathematical fictions such as number and “class” on the grounds 
of logic, and indeed they have a foundational place in mathematical 
reasoning. But we should remain “agnostic” toward the question of 
their existence or reality, brushing the dust of the imagination off 
our hands as we advance the argument.31 And we must certainly dis-
tinguish logical fictions from distinctly unreal literary fictions such 
as Hamlet, as real as Shakespeare’s own imagination must have been 
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when he wrote the play.32 In this sense, Russell effects a kind of “set-
tlement” (in Latour’s terms) between science and literature by assert-
ing a distinction between them, and then fortifying that distinction, 
as necessary, with disdain and dismissiveness.33

Admitting the question of mathematical reality into direct in-
quiry, however, in turn raises intriguing questions about the nature 
of the imagination. If one accepts that the imagination is neces-
sary to mathematical thought, one is led to the paradoxical state-
ment that mathematical entities are both real and imaginary, or real 
because imaginary, or real insofar as the imagination allows us to 
think of them as real—which is why the concept of fiction is so 
useful, and we might borrow a term of classification from literary 
study and call such mathematical entities realist. Rudolf Carnap has 
sought to clarify the question of mathematical realism by distin-
guishing claims that pertain within a given system of explanation 
(“internal” claims), from claims made about facts outside the sys-
tem (“external” claims).34 In Carnap’s view, asking whether math-
ematical objects such as numbers “really exist” confuses an external 
problem with an internal one, since it would be trivial to pose the 
question of reality to any mathematical system of explanation that 
presumes that reality (prompting the answer, “Of course they are!”). 
Serious questions about the reality of numbers could only belong to 
a different domain—philosophical speculation, say, or certain kinds 
of reflection prompted by naïve experience, or musings by literary 
critics or other nonmathematicians—that is conducted according to 
different systems of explanation. Thus the pressing question—“But 
are numbers real?”—should be understood, in Carnap’s view, as a 
disingenuous version of the more proper question: “Should I accept 
this system of explanation about the realness of numbers as useful 
or relevant to me or not”? It is not a theoretical or metaphysical 
question that presents itself, but a practical one—namely, a question 
of whether or not one system of explanation is to be preferred over 
another in a given circumstance or for a given problem.
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Philosophy of Mathematics (above, n. 10), pp. 241–257.



If we adopt Carnap’s position, we may argue that the imagination 
allows us to cross over from one domain of explanation (philosophy, 
or psychology, or literature) to another (mathematics); we could go 
further and say that the imagination is that faculty of thinking that 
facilitates movement across systems of explanation that seem irreconcil-
able, and that, as a consequence, allows for new thoughts, new argu-
ments, and new explanations to occur. The question then becomes 
one of recognition: Do we acknowledge that we are employing our 
imagination or not? A more technical way to make the same point 
would be to turn to a fairly restricted definition of the imagination 
typical of recent work in the philosophy of mind, which regards 
the imagination as fundamentally “propositional”: specifically, the 
imagination allows us to formulate propositions about hypothetical 
conditions, possible worlds, counter-factual arguments, and state-
ments about what might be the case.35 Understood in this way, 
the imagination would be fundamental to many different kinds of 
mathematical arguments; indeed, it is difficult to conceive of any 
discussion of a mathematical problem that does not presume it, at 
least implicitly, from the word problems of children’s textbooks to 
the most sophisticated equations. But we may generalize from this 
definition and describe the imagination as that which facilitates the 
invention of new propositions about the world by drawing on prop-
ositions that we already know, a definition of the imagination that 
both recalls classical discussion and that seems especially congenial 
to our neo-Romantic moment, which continues to prize notions of 
creativity and discovery. Instead of individual or personal creativity 
and discovery, however, the imagination would, in this view, facili-
tate a kind of collective thinking across disciplines and within insti-
tutions; it would mark a certain adventurousness or experimenta-
tion in intellectual work that results when one borrows from many 
systems of explanation at the same time.36

This special issue contemplates the relationship between math-
ematics and the imagination; that is, how/what mathematicians 
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imagine when they do math, and how mathematics is imagined 
by mathematicians and nonmathematicians alike. While the es-
says range across disciplines and time periods, there are numerous 
threads connecting them, such as the persistent question of whether 
mathematics is transcendent/external or imminent/internal; the 
quest for understanding the nature of abstract thought and how to 
represent it; the reality of mathematical entities and concepts; ex-
plorations of topological theory; and the impact of social relation-
ships and politics on the development of mathematical thought and 
practice.

The six essays are arranged chronologically by topic. The first es-
say, “Imagination and Layered Ontology in Greek Mathematics,” is 
by classicist Reviel Netz, who examines the use of the imagination 
in Greek mathematics when envisioning the virtual presence of geo-
metrical objects, such as a point or circle. Netz performs a philologi-
cal analysis of the term noein, and how for Greek mathematicians, 
especially Archimedes, it primarily implied a kind of “seeing-as” op-
erator, offering a layered ontology of both reality and the imaginary. 
Drawing on a study of noein by von Fritz and on the kinds of seeing 
that Wittgenstein describes in his Philosophical Investigations, Netz 
dissects the “philosophical grammar” of the verb and shows how 
it is not about imagining a mathematical object in such a way as to 
bring it into existence. To the Greeks, mathematics only pointed 
to the really real and ideal forms; it could never completely pres-
ent or represent it. What was to be imagined was a “trace” of the 
object—hence the layered ontology. In Greek mathematics, this 
sort of envisioning was an act of “make-believe seeing as,” which 
is why he translates noein as “to imagine,” instead of the equally 
viable “to understand” or “to construe.” In observing how Greek 
mathematicians used this term, Netz also discusses the low status of 
the diagram in classical mathematics, and how Greek mathematical 
writing required the reader to imagine in the mind’s eye what the 
equations and proofs are describing: “As long as the object is pos-
sible, it does not really matter [to the Greek mathematician] that it 
is purely imaginary; mathematics is the art of the possible.” And this 
“art of the possible” was also conceived by the Greeks as hypotheti-
cal, which is not what we generally think of today when we think 
of the “certainty” that mathematical reasoning offers. One of the 
consequences of Netz’s essay is a clear demonstration of how much 
perceptions of reality and of mathematical truth have changed since 
antiquity.

Following Netz’s piece is Robert Goulding’s analysis of the intel-
lectual battle between Petrus Ramus and Jacques Charpentier over 
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how classical mathematics should be conceived. As Goulding shows 
in “Pythagoras in Paris: Petrus Ramus Imagines the Prehistory of 
Mathematics,” one of Ramus’s main tactics was to rewrite elements 
in the history of mathematics so as to defend the notion of math-
ematics as applicable and linked to the physical world, taught to all, 
and not arcane, metaphysical, or spiritual, as the scholastic Char-
pentier would have it. The conflict between Ramus and Charpen-
tier was highly public and politicized, especially given the latter’s 
links to the elite oligarchy of France’s old regime. Politics, religion, 
academic freedom, pedagogy, self-fashioning, and ideologies on the 
nature and value of progress all played their part in the debates. 
Although Charpentier, with his old-school thinking and old-regime 
ties won the battle, Ramus’s vision for the teaching and doing of 
mathematics would ultimately win the war, the scientific revolution 
already beginning to be born. Goulding’s essay brings to the fore 
Ramus’s impulse to author a history of mathematics, the Prooemium 
mathematicum (1567)—something that had yet to be done in any 
formal, extensive, or, most importantly, continuous (as opposed to 
fragmentary) way. The imagination thus serves in a multiple capac-
ity in Goulding’s essay: as part of what Ramus saw as central to the 
doing of mathematics; as central to Ramus’s construction of the 
past, especially his refashioning of Pythagoras as the ideal university 
professor and originator of the reforms he wanted to see at the Uni-
versity of Paris; and as fundamental to all the liberal arts.

Just postdating the Ramus–Charpentier debate and also located 
within French borders is Michel de Montaigne’s 1580 Essais. In “A 
Devil in Diversion: Number and Line in the Essais,” Tom Conley 
offers a study of the geometry, topography, and typography at play 
(literally) in the language of Montaigne’s famous collection of auto-
biographical anecdotes and philosophical contemplations. The Es-
sais, in particular two essays of the third volume (“Of Three Kinds 
of Associations” and “Of Diversion”), Conley shows, utilize a sort of 
ludic mathematics: ciphering numbers, proportions, and measures 
in curious discursive and indexical ways. The reader must thus take 
on the role of the decipherer, armed with knowledge of quantita-
tive functions, especially those found in fields such as combinato-
rics and mapmaking. Writer and reader enter into games of gematria 
and plotting that make manifest not only what Montaigne wishes 
to convey, but an indication of prose’s—and language’s in general—
natural and powerful links to the computational, spatial, and vi-
sual. Conley’s “topographic reading” of the Essais embraces what 
could be called a “tropological mathematics.” Conley cites Michel 
de Certeau’s discussions on the aesthetics of space (and evokes that 
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of Bachelard), as well as Derrida’s and Deleuze’s considerations of 
the formal nature of language, but focuses primarily on the typo-
graphic tricks and epistemological paradoxes of rhetorical figures 
such as double entendre, mise en abyme, and triadic formulations, 
as well as on transpositional tropes such as metathesis. Montaigne’s 
imagining of how numeric relations reflect and even inspire hu-
man relations compels us to look at the numerations and calcula- 
tions we make—and those we reject—when we read, write, think, and  
live.

Considering topology as a mathematical field from the point 
of view of one of its early creators, the next essay, “Bernhard Ri-
emann’s Conceptual Mathematics and the Idea of Space,” moves us 
into nineteenth-century Germany and into the remarkable imagina-
tion of mathematician G. F. Bernhard Riemann. Arkady Plotnitsky 
chooses as his focus Riemann’s work on manifolds—an analysis of 
space in terms of subspaces and the relations among them—and in-
vestigates how Riemann develops this new “spatiality” by engaging 
with the concept of “concept” in mathematical thinking. Plotnitsky 
builds on three thinkers for whom Riemann’s work was of great in-
spiration: the mathematician Hermann Weyl, for his theories on 
the interaction between mathematical thinking and phenomenal 
intuition; and Gilles Deleuze and Félix Guattari, for their writing on 
how the mind confronts doxa and chaos. What Plotnitsky reveals is 
that Riemann, when doing mathematics, thought in terms of “con-
cepts” (as many mathematicians do, and discuss doing), rather than 
in terms of formula or manipulations of sets (as Georg Cantor would 
later do) or in other possible thought-modes (there are many), and 
that his theory of manifolds emerged from a broad “sociological” 
and “material” understanding of space, responding to both doxa 
and chaos. Plotnitsky sees Riemann’s mathematical and philosophi-
cal thought and imagination as deeply interlinked. Riemann’s work 
displays an extraordinary imaginative power for encountering and 
translating many sorts of phenomena, so much so as to contribute 
revolutionary notions and advances in nearly all fields of mathe-
matics and elsewhere, most especially in physics, where Riemann’s 
concept of manifold was used by Einstein in his general relativity 
theory—a non-Newtonian theory of gravitation.

Art historian Linda Dalrymple Henderson contributes the fifth 
essay in the issue, “The Image and Imagination of the Fourth Di-
mension in Twentieth-Century Art and Culture,” by extending her 
ground-breaking work on early twentieth-century mathematics, 
physics, and art with a discussion of how the fourth dimension was 
imagined among mathematicians and artists from cubism to the 
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age of the computer. Henderson shows how popular publications 
on mathematics by E. A. Abbott, Claude Bragdon, David Hilbert, 
and Henri Poincaré, among others, drew on the visual and iconic 
aspects of the imagination to explain new geometrical models of 
space, and how these books in turn influenced visual artists who 
were seeking graphic conventions for representing space in new 
ways. But the fourth dimension was more than a mathematical hy-
pothesis, becoming the basis for liberatory and utopian worldviews 
such as Charles Howard Hinton’s “hyperspace philosophy,” which 
argued that human minds loosened from their conventional catego-
ries and released into the new limitless space of free thought would 
revolutionize mental and physical reality. Henderson examines the 
place of the imagination and the fourth dimension in cubism, su-
prematist abstraction, and in the work of Marcel Duchamp, before 
turning to the art of Tony Robbin, “the most serious artist-scholar 
in four-dimensional geometry of the twentieth century.” She shows 
how artists experimented with a range of techniques for represent-
ing the invisible and intellectual formations of mathematical equa-
tions, whether by experimenting with color and modeling complex 
sensory perception (as in the work of Juan Gris), by pushing toward 
greater abstraction (that of Kazimir Malevich), by creating layers of 
allegory and visual play (Duchamp’s The Large Glass), or by collabo-
rating with mathematicians and painting from computer-generated 
models of geometrical relationship (Robbin).

The final essay, “A Hyperspace Poetics, or, Words in Space: Digital 
Poetry Through Ezra Pound’s Vorticism,” by literature scholar Lori 
Emerson concludes the issue by establishing conceptual links be-
tween early twentieth-century Vorticism and contemporary digital 
poetry, showing how non-Euclidean geometries and new philoso-
phies of mathematics provided the ground for experiments in po-
etic form by Ezra Pound, experiments that in turn allow us to un-
derstand the “kinetic” verse of contemporary digital poets such as 
David Knoebel, Eduardo Kac, and Jim Rosenberg as fundamentally 
continuous, in both formal and intellectual terms, with the earlier 
modernist moment. Emerson interleaves her discussion of Pound’s 
poetics and of the larger shifts in mathematical thought about space 
that characterized the early twentieth century with italicized reflec-
tions on contemporary digital poetry, particularly its interactivity, 
its complex play between materiality and virtuality, and its self-
conscious exploitation of its screened mode of appearance, in this 
way suggesting how digital poetry, like new media more broadly, 
requires reading practices that reorient in turn how we approach the 
traditional poetry of high modernism.
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The essays presented here offer examples of the new questions 
that become possible once we begin to think imaginatively about 
mathematics, and, at the same time, to think mathematically about 
the imagination. Scholars in neuroscience, psychology, and cogni-
tive science have been examining how the brain does math,37 how 
the brain perceives and knows what it knows,38 and how to model 
thought through geometrical representation.39 Ethnomathematics, 
linked to both anthropology and the history of mathematics, con-
siders the cultural relativism of mathematical understanding, for-
mation, and education.40 Women’s studies and feminist studies have 
looked at the role of gender in the doing of mathematics.41 Math-
ematical models have been subjects of and have informed a great 
amount of literary theory.42 The role of mathematics in digital arts is 
a large and expanding topic, especially when discussing computer-
based interactive literature, gesture and performance, and elec-
tronic music.43 There have been annual international conferences  
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on mathematics and the arts, and a high-profile conference on 
“Mathematics and Narrative” in Greece in 2005.44 Interdisciplinary 
programs, such as Dartmouth’s “Mathematics across the Curricu-
lum,” are being established. And it is difficult not to notice the last 
decade’s flurry of films, biographies, plays, and television shows on 
mathematicians and/or involving mathematics.45

Some of these new questions have found provisional answers, 
while others will prompt future inquiry: How have advances in 
mathematical knowledge affected the ways we experience and de-
pict the world? Do mathematicians imagine differently than poets, 
painters, philosophers, or novelists? Are the cognitive operations 
necessary for solving problems, writing equations, and engaging in 
abstract mathematical thought the same as those used in other sorts 
of creative endeavors? Are the semiotic differences among words, 
numbers, and diagrams as distinct as they seem? How have accounts 
of the imagination (philosophical, psychological, physiological, neu-
rological, literary, aesthetic) positioned it in relation to the kind of 
knowledge that mathematics is thought to provide? Can understand-
ing mathematical concepts such as object, model, structure, relation, 
function, derivation, abstraction, transformation, property, identity, 
infinity, and so on enrich our experience and use of these concepts 
in other fields? What is beauty in mathematics? This special issue of 
Configurations invites us to take a few steps toward these questions, 
and toward others we have not yet imagined—toward what math-
ematician Hermann Weyl called “thinking the possible.”46
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